Zaefferer, Martin; Gaida, Daniel; Bartz-Beielstein, Thomas:
Multi-fidelity Modeling and Optimization of Biogas Plants
In: CIplus, Band 2/2014
2014-10-24Bericht in Reihe / SerieOA Grün
Fakultät für Informatik und Ingenieurwissenschaften » Institut für Data Science, Engineering, and AnalyticsFakultät für Informatik und Ingenieurwissenschaften » Institut für Informatik
Titel:
Multi-fidelity Modeling and Optimization of Biogas Plants
Autor*in:
Zaefferer, MartinTH Köln
DHSB-ID
THK0001564
SCOPUS
41262798300
Sonstiges
der TH Köln zugeordnete Person
;
Gaida, DanielTH Köln
DHSB-ID
THK0036623
GND
1121594387
Sonstiges
der TH Köln zugeordnete Person
;
Bartz-Beielstein, ThomasTH Köln
DHSB-ID
THK0001582
GND
124999476
ORCID
0000-0002-5938-5158ORCID iD
SCOPUS
57190702501
Sonstiges
der TH Köln zugeordnete Person
Erscheinungsort:
Köln
Verlag:
Technische Hochschule Köln
Veröffentlicht am:
2014-10-24
OA-Publikationsweg:
OA Grün
Sprache des Textes:
Englisch
Schlagwort, Thema:
Preprint
Ressourcentyp:
Text
Access Rights:
Open Access
Praxispartner*in:
Nein
Kategorie:
Forschung
Teil der Statistik:
Teil der Statistik

Abstract in Englisch:

An essential task for operation and planning of biogas plants is the optimization of substrate feed mixtures. Optimizing the monetary gain requires the determination of the exact amounts of maize, manure, grass silage, and other substrates. Accurate simulation models are mandatory for this optimization, because the underlying chemical processes are very slow. The simulation models themselves may be time-consuming to evaluate, hence we show how to use surrogate-model-based approaches to optimize biogas plants efficiently. In detail, a Kriging surrogate is employed. To improve model quality of this surrogate, we integrate cheaply available data into the optimization process. Doing so, Multi-fidelity modeling methods like Co-Kriging are employed. Furthermore, a two-layered modeling approach is employed to avoid deterioration of model quality due to discontinuities in the search space. At the same time, the cheaply available data is shown to be very useful for initialization of the employed optimization algorithms. Overall, we show how biogas plants can be efficiently modeled using data-driven methods, avoiding discontinuities as well as including cheaply available data. The application of the derived surrogate models to an optimization process is shown to be very difficult, yet successful for a lower problem dimension.